

MS Frontier Re Modeling Research Pte. Ltd. Catastrophic Risk – A Flood Perspective

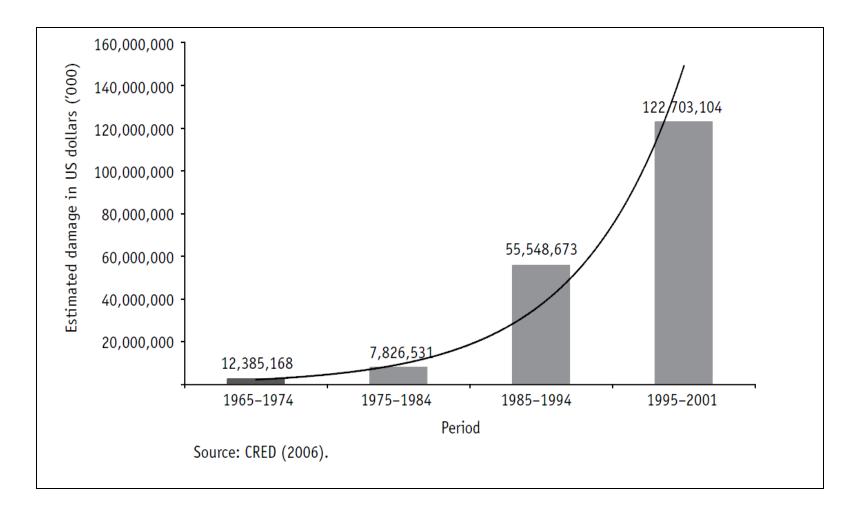
Kunal Jadhav

12 April 2012

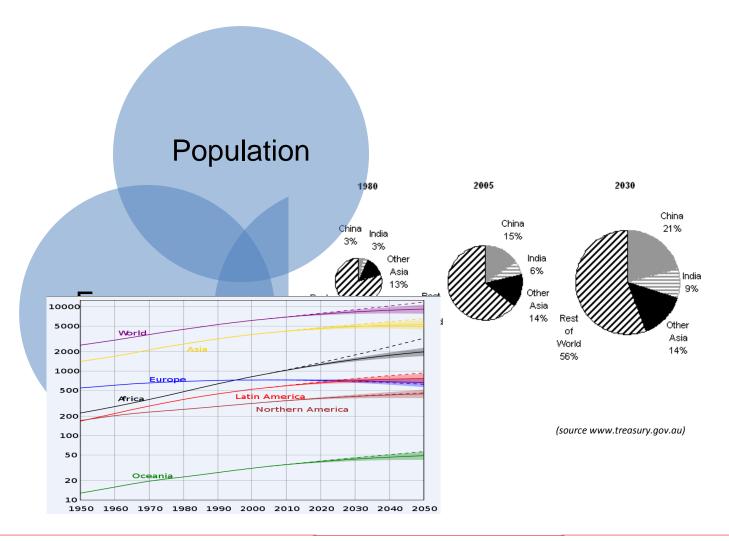
Private & Confidential



- Overview of natural disasters
- Flood risk assessment methodology
- Uncertainty in flood modeling
- Flood Profile Asia & Pakistan
- Summary


Overview of natural disaster

Annual Average Damage (\$US billion): 1990-2010



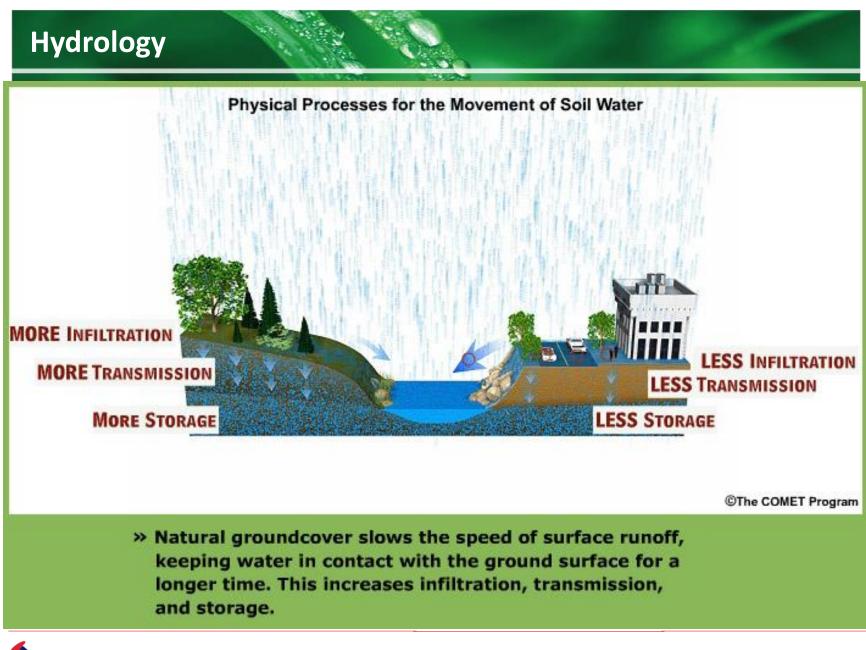
Source:"EM-DAT: The OFDA/CRED International Disaster Database, Universite catholique de Louvain, Brussels, Belgium"

Economic Losses due to Flood – Asia 1965 - 2004

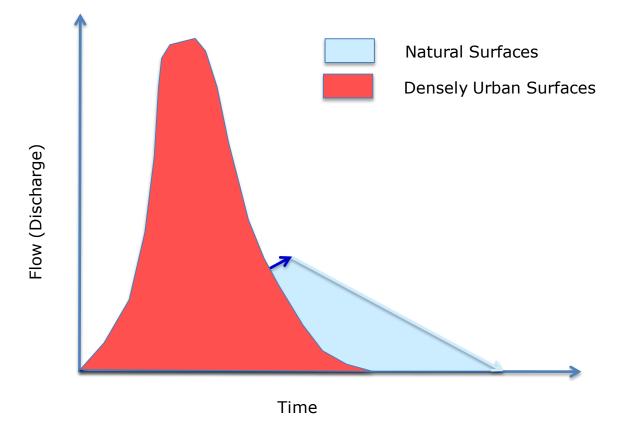
Why are the numbers are bigger now?

What is available?

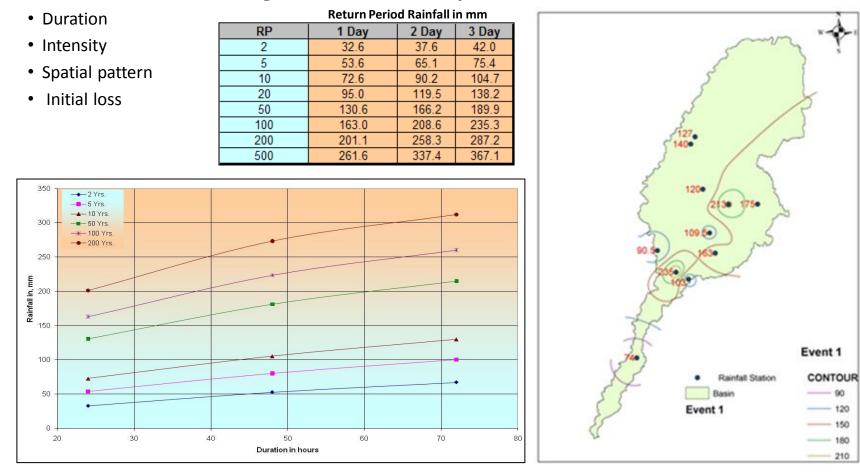
	AIR		EQECAT			RMS		Risk Frontiers	
Country	Tropical Cyclone	Earthquake	Tropical Cyclone	Earthquake	Typhoon rainfall – flooding	Tropical Cyclone	Earthquake	Riverine Flood	Hail
China	✓	✓	✓	✓	✓		~		
Guam						✓	~		
Hong Kong*	✓		~	~		~	~		
India			✓	✓			~		
Indonesia		✓		✓			✓		
Japan	✓	✓	✓	✓	✓	✓	`		
Macau*							`		
Malaysia			✓	✓	✓				
Pakistan			✓	✓					
Philippines	✓	✓	✓	✓	✓		~		
Saipan**							~		
Singapore				✓					
South Korea	✓		✓	✓	✓				
Taiwan	✓	✓	~	✓	~		✓		
Thailand			✓	✓	✓				
Australia	✓	✓	~	✓		~	✓	✓	~
New Zealand		✓		~			~		


* Included in China EQ

** Included in Guam EQ

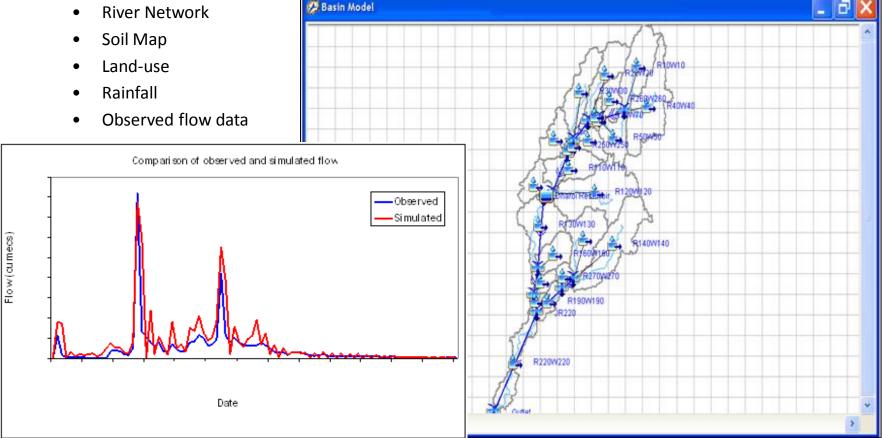

Flood risk assessment methodology

Probabilistic Risk Model Rainfall/Runoff based Stochastic Events **GIS** Input • DEM Inundation Model River Hydrological Cross-sections Hydraulic Roughness Calibration Satellite Flood Images Reconstruction of Historical Events Flood Extent and Depth Exposures at Risk Vulnerability • Building attributed Policy Information Financial Model Flood Risk Assessment


Hydrology – Rainfall Runoff relationship in different conditions

Stochastic Module

The stochastic event module generates stochastic events from the characteristics of historical events using simulation techniques.

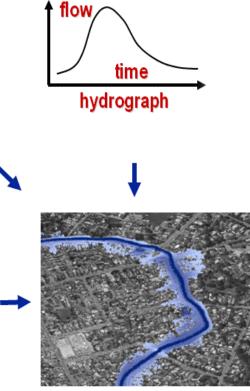

Hazard Module – Hydrologic modeling

Input for hydrological model

Digital Elevation model – Ground surface elevation • data

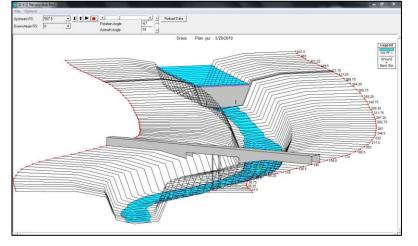
🖉 Basin Model

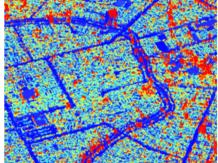
River Network •


Hazard Module – Hydraulic modeling

Input for hydraulic model

- River cross section
- Flow hydrograph
- Surface roughness
- Satellite imagery

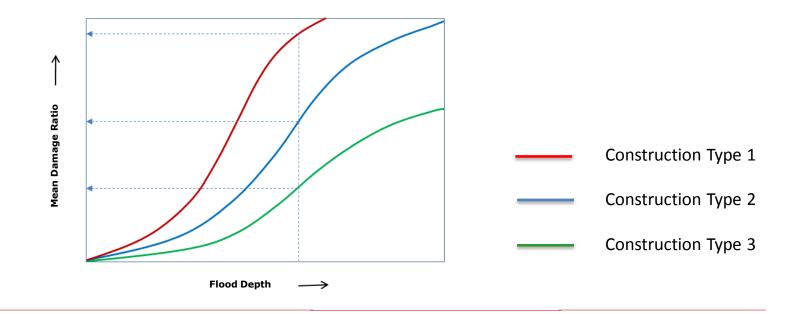



elevation model

flood depths & extent

http://www.riskscape.org.nz/structure/modelling

surface roughness model


Types of Floods

Туре	Cause	Areas Affected	Loss Agents	Damage - Frequency and Severity	Loss Prevention	
NTORM NILLOP	High level of water due to wind set-up, high waves		-Wave force -Salt water	-Low frequency -Very high losses	-Early warning -Dykes -Evacuation	
	Intense and/or persistent rain for longer period	Areas near river	-Prolonged impact of water -Water contamination	-High loss potential	-Early Warning -Structural flood control -Temporary protection of property -Putting movable objects somewhere else Evacuation	
Flash Flood	Intense rainfall; mostly locally	Practically anywhere	-Mechanical impact of fast flowing water -Large amount of sediments	-High frequency Relatively minor losses	-Adequate drainage	

The vulnerability is the expected degree of loss, which can be expressed as a damage ratio.

- magnitude of the hazard (e.g. flood depth, flow velocity)
- &
- the characteristics (attributes) of the asset (e.g. structural strength of a building)

Physical Characteristics

Exposure Module

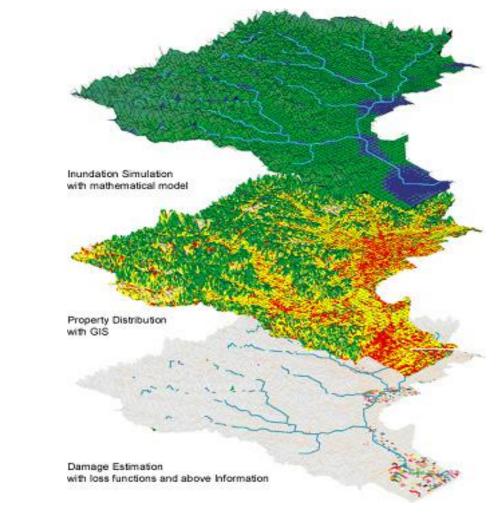
Exposure data development

- LOB
 - Residential
 - Commercial
 - Industrial
 - Agricultural

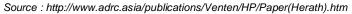
etc.

- Structural details
 - Construction type and material
 - Wall and flooring material etc
 - Age and height

etc.

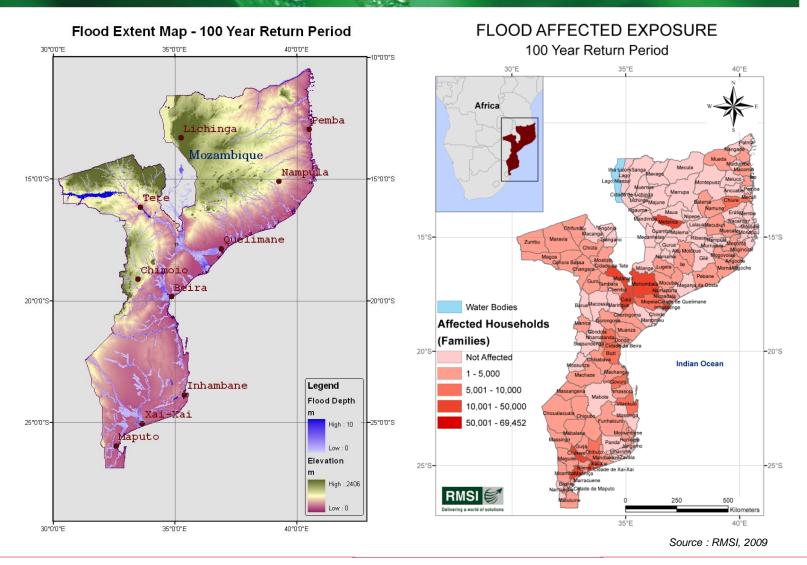

- Location
- Data Resolution

dia: Summai	ry						
ble S00-008:	DISTRIBUTION OF HOUSEHOLDS LIVI	NG IN CENSUS HOUS	ES BY PF	REDOMINANT	MATERIA	AL OF WALL	
		Total	%	Rural	%	Urban	0
	Total number of households	191,963,935	100.0	138,271,559	72.0	53,692,376	28
1	Material of wall:						
l.1	Grass, Thatch, Bamboo, Wood, etc.	19,592,950	10.2	17,486,115	12.6	2,106,835	3.
1.2	Plastic, Polythene	552,263	0.3	363,671	0.3	188,592	0.
1.3	Mud, Unburnt Brick	61,792,142	32.2	54,928,309	39.7	6,863,833	12.
1.4	Wood	1,762,822	0.9	1,288,987	0.9	473,835	0.
1.5	G.I., Metal, Asbestos sheets	1,238,588	0.6	511,566	0.4	727,022	1.4
1.6	Burnt Brick	83,825,466	43.7	47,305,200	34.2	36,520,266	68.
1.7	Stone	18,072,903	9.4	14,457,490	10.5	3,615,413	6.
1.8	Concrete	4,680,000	2.4	1,609,316	1.2	3,070,684	5.
1.9	Any other material	446,801	0.2	320,905	0.2	125,896	0.

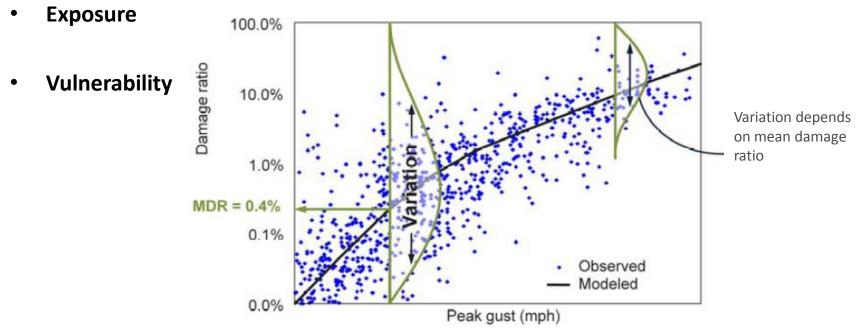

ndia : Summa	гу						
able S00-006:	DISTRIBUTION OF CENSUS HOUSES B	Y PREDOMINANT MA	TERIAL (OF FLOOR			
		Total	%	Rural	%	Urban	%
	Total number of census houses	249,095,869	100.0	177,537,513	71.3	71,558,356	28.7
G	Material of floor:						
G.1	Mud	136,779,853	54.9	124,855,981	70.3	11,923,872	16.7
G.2	Wood, Bamboo	2,286,504	0.9	1,822,348	1.0	464,156	0.6
G.3	Brick	6,287,685	2.5	4,030,993	2.3	2,256,692	3.2
G.4	Stone	14,507,423	5.8	8,119,872	4.6	6,387,551	8.9
G.5	Cement	69,712,015	28.0	34,235,926	19.3	35,476,089	49.6
G.6	Mosaic, Floor Tiles	18,544,232	7.4	4,010,786	2.3	14,533,446	20.3
G.7	Any other material	978,157	0.4	461,607	0.3	516,550	0.7

Source: India : Census of India 2001

Loss Module



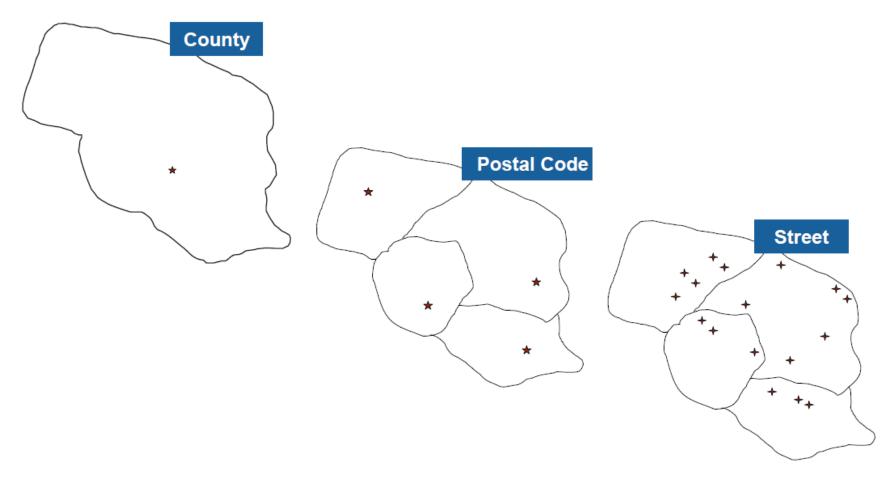
Loss = MDR * Replacement cost


Flood Hazard Map

Modeling Uncertainties

• Hazard

Residential Wood Frame


Data

- Meteorological and hydrological data availability and gaps
- Large amount of data heavy to process
- Resolution of data Model Input Data
- Exposure data resolution
- Loss data for historical events

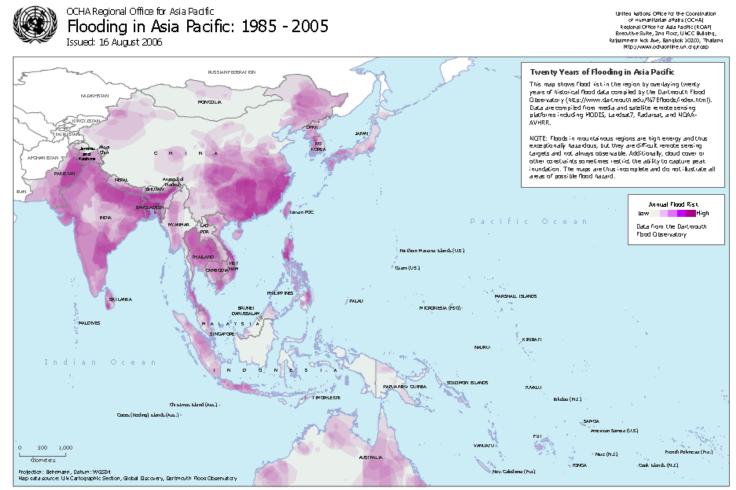
Other challenges in flood modeling

Exposure Data Resolution

Other challenges in flood modeling

- Building Attributes

- Construction
- Occupancy
- Building Height

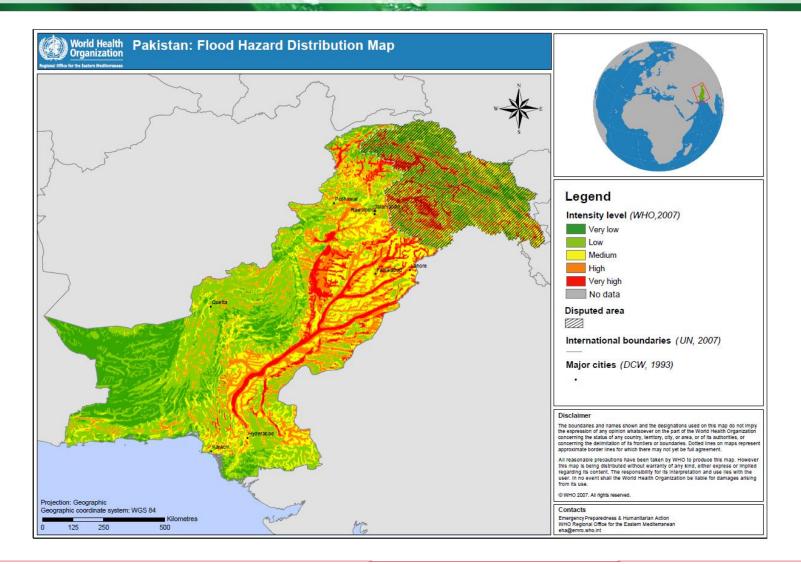


Flood Profile - Asia

Absolute h	human exposure		Absolute e	conomic exposure		
Average people exposed per year Country				Country		
1	19,279,960	Bangladesh	1		21.86	United States of America
2	15,859,640	India	2		12.58	China
3	3,972,502	China	3		9.74	Bangladesh
4	3,403,041	Viet Nam	4		9.39	India
5	1,765,674	Cambodia	5		4.72	Germany
6	1,101,507	Indonesia	6		4.56	Japan
7	819,822	Thailand	7		4.17	France
8	788,572	Philippines	8		3.09	Thailand
9	579,732	Pakistan	9		2.57	Philippines
10	444,450	Myanmar	10		2.21	Viet Nam
11	390,594	United States of America	11		2.18	Argentina
12	333,224	Nepal	12		1.98	United Kingdom
13	265,260	Brazil	13		1.84	Spain
14	233,320	Russian Federation	14		1.82	Netherlands
15	226,622	Nigeria	15		1.76	Canada

<u>http://www.preventionweb.net/english/hazards/statistics/risk.php?hid=62</u> 1: In billions US\$

Flood Profile - Asia



The names shown and the designations used on this map do not imply official endorsement or acceptance by the United Kations

Map Ref: OCHA_ROAP_Floos_History_v3_060B36

Flood Profile - Pakistan

- Asia's potential for large catastrophe losses is increasing due to
 - growing population
 - economic growth
 - increasing insurance penetration
- Flood models are the most complex models large amounts of high resolution datasets are needed
- Currently no standalone Flood Model available in Asia
- Data quality : Garbage in garbage out

