

Risk Management Essentials

by

Karim Merchant, BE(Mech), ACII, CITIP

Pakistan Insurance Institute Karachi.

Dated: May 10, 2024.

Contents

- Terminology & Basic Concepts
- Principles of Fire
- Risk Management Process
- Risk Management and Insurance
- Risk Survey an effective tool
- Risk Improvement Recommendations Examples
- Estimation of Loss Potential

Caution!

lay public uses

Hazard, Risk, Peril and Danger

as synonyms and relates them to safety

<u>Risk</u>

- risk refers to the possibility that something unpleasant or dangerous might happen.
- risk is a condition where there is a possibility of an adverse deviation from a desired outcome.
- defined in two dimension: impact and probability

Risk = probability * severity

PROBAILITY	SEVERITY
Frequent	Catastrophic
Occasional	Important
Unlikely	Marginal
Very unlikely	Insignificant

Risk Acceptance??

- 1,000 car accidents in a year
- 1,000 train accidents in a year

<u>Peril</u>

Is the <u>prime cause that give rise to the loss</u>, often beyond the control of anyone.

example: storm, fire, theft, motor accident, explosion, flood

Hazard

- factors (physical or chemical) which may influence the outcome.
- the conditions that increase the severity of the loss or the conditions affecting perils.
- not themselves cause of loss, but can increase or decrease the effect, in case a peril operates
- example proximity of house to river
 - use of solvents

Types of Hazards

Physical Hazard

- relates to the physical characteristics of the risk example
 - construction of a building
 - security protection
 - proximity to river

Moral Hazard

- concerns human aspects which may influence outcome.
- usually refers to the attitude of the insured person

Principles (behavior) of Fire

Fire/combustion is a Chemical Reaction (uncontrolled fast oxidation) that involves evolution of light and energy (heat) in significant amount

Fire Triangle

Energy (heat) causes vaporization of fuel in and results in thermal decomposition in presence of Oxygen (Chemical Reaction)

4 basic ways to extinguish fire

- Physically separating the combustible substance from the flame
- Removing or diluting the oxygen supply
- Reducing the temperature of the combustible or of the flame
- Introducing chemicals that modify the combustible chemistry

Classes of fire

Class	Combustibles	Examples
Α	Charring solids	Wood, paper, fibers, plastics
В	Liquids, melting plastics	Ethanol, gasoline, oils, gasses, patrol
С	Gases	Methane, Propane, Butane, Nitrogen, Ammonia
D	Metals	Magnesium, titanium, Sodium
E	Live electrical equipment	Motors, switches, cables

Extinguishing Agents

Gaseous CO2 Nitrogen Water stream Chemicals AB - Powder B - Powder D - Powder D - Powder D - Powder

Action of Extinguishing Agents

Extinguishing Agent	Cooling	Block Oxygen	Reduce heat of combustibles	Chemical action with flame
Water	++	+		
Foam	+	++	+	
AB-Powder		+		++
B-Powder				
D-Powder		++		++
CO ₂	+	++	* 1	

++ main effects

+ secondary effects

Extinguishing Agents-Effects

Class of Fires	A (solid)	B (liquid)	C (gas)	D (metals)	E (EE)
Water (full jet)	14	07 407			9-30
Water (spray)	144	+/-	+	++	+/-
Foam		+ 1			
AB-Powder	(4)	4/1	4		0+/-
B-Powder	(++)	++			+
D-Powder			440		
CO ₂		4	+/-		++

++ very suitable + suitable +/- limited efficiency - not suitable -- dangerous

Any guess what's wrong!

RISK MANAGEMENT PROCESS

Risk Management - definition

"The <u>identification</u>, <u>analysis</u> and <u>economic control</u>
of those <u>risks</u> which can <u>threaten</u> the <u>assets or</u>
<u>earning capacity of an enterprise</u>"

Risk Management - process

- Identify risk
- Analyze/ Evaluate risk
- Risk Control (Treatment)
- Risk Transfer (unacceptable risk)
- Regular review

Risk Identification

- Identify any activity that may give rise to <u>risk</u>
- Determining what the risks are that pose a threat to the company or business that if realized could prevent company from achieving its goals (economic)

Risk Evaluation

- To understand <u>relevance of those risks to the</u> <u>individual operation and organization as whole</u>
- Both the <u>likely frequency</u> of the risk incident happening and <u>potential severity</u> of the damage

Risk Mitigation

- Once identified and analyzed, the organization has many options to mitigate the risk effects:
 - reduce the riskPhysical/Non physical controls
 - retain the risknot to affect acceptable
 - <u>transfer the risk</u> e.g insurance

Risk Management and Insurance

- Risk transferred to insurance company becomes insurer's risks
- Company intend to carry out internal risk management to decide upon risk identification, reduction, retention and transfer...

Risk Management Policy

Risk Policy

✓ defines the conditions of acceptable risks

Risk Strategy

√ defines how to transfer the unacceptable risks

Risk Control

✓ defines the conditions for control and minimizing the risks

Risk Management and Insurance - advantages

Risk Assessment

- > selection
- > adapt rates to risk quality
 - Improve Underwriting Results

Risk Management and Insurance - advantages

Estimate of Maximum Loss Potentials

Optimization of capacity allocation

- Improve Underwriting Results

Risk Management and Insurance - advantages

Risk Visits (Survey) and Recommendations

- ➤ Improve risk quality
- >Service to the client
- > Foster long term relationship with the client

- Improve Underwriting Results

Risk Management and Insurance - advantages

Risk Identification

 Information gathering to be structured with end objective always clear in mind

Sources of information

- Internal

 (officials, documents, layout, plans etc.)
- External
 (consultants, insurers, govt. depts.,)
- Others
 (newspapers, associations, internet)

Techniques to identify risk

- Organizational chart | Flow Chart
- Checklist and questionnaires
- Physical Surveys | Brainstorming
- Fault tree
- Hazard & Operability Studies (HAZOP)

Risk Survey - an effective tool...

- Risk identification
- Risk reduction (RIR)
- Underwriting support (fire/property)
- Risk retention (EML/MPL/PML)
- Risk transfer (reinsurance)

Risk Survey - advantages

- Clear and personal picture of risk
- Face to face conversations
- Other tools like questionnaire and checklist can be used during survey
- Survey report conclude with recommendations for improvement risk or reduce impact – <u>dual</u> <u>purpose i.e. identifying and managing</u>

Risk Survey - disadvantages

- Survey exposure present and visible on the day of visit
- Expensive time and money
- Raise confidence unrealistically
- Related third party premises can not be surveyed
- Factory Manger may abdicate his responsibility

Site Engineering Survey

- Before Site Visit
 - Site Information Request
- During Site Visit
 - Plant Tour
 - Interviews with Key Staff
- After Site Visit
 - Site Report
 - Risk Improvement
- Recommendations
 - Estimated Maximum Loss (EML)
 - Assessment of Risk

Risk Assessment Areas of Potential Hazards

External Exposures

- Location
- Earthquake/Tsunami
- Weather (Extreme) Pattern
- Lightning
- Neighbors (Arson/Fire)
- Falling Aircraft
- Sabotage/Terrorism
- Vehicle/Vessel Impact
- Flooding
- Natural Hazards (Rain/Wind Storm etc.)

Risk Assessment

PEKisten leuranze Institute

Areas of Potential Hazards

- Management Systems (Internal Exposures)
 - Operations/Process
 - Construction
 - Maintenance
 - Inspection Procedures
 - Engineering
 - Safety
 - Security
 - Housekeeping
 - Storage Arrangements
 - Pressure Vessels
 - Flammable Liquids

Risk Assessment Controls

- Plant Protection System
 - Active Process Protection (Emergency shut down)
 - Passive Process Protection (Permit system)
 - Active Fire Protection (Automatic Deluge)
 - Passive Fire Protection (Fire proof walls/doors)
 - Site Protection (Fencing/access control)

Risk Quality – the concept

- Adequacy of protection measuers compared to exposure
- Comparison with industry standards in terms of protection
- Compliance with 'best in class'
- Criterion for risk selection and pricing

Risk Quality: Issues

- Industry specific
- Industry standard, best proactice
- Local perspective vs global perspective
- Reference: specific portfolio vs global portfolio
- Consider protection concept
- Compliance with regulations is not relevant

Risk level / score	Recommended action
Very High (72 -150)	Act Now: Steps must be taken to lower the risk level to as low as reasonably practicable using the hierarchy of risk controls;
High (48 -71)	Act Today: Highest management decision is required urgently
Medium (24 – 47)	Follow management instructions: The supervisor must review and document the effectiveness of the implemented risk controls.
Low (6 – 23)	OK for now: Record and review if any equipment/ people/ materials/ work processes or procedures change. Managed by local documented routine procedures which must include

Risk Improvement Recommendations Examples

Risk Improvement Recommendations Fire wall between oil filled transformers

Risk Improvement Recommendations Regular Emergency Exercise Practice

Risk Improvement Recommendations Install Remotely Operated Isolation Valves, double mechanical seals in pumps

Risk Improvement Recommendations Log out Tag Out procedure, Implement Management of Change Procedure, Trip By-pass procedure, ...etc.

Risk Improvement Recommendations Piping corrosion Inspection

Risk Improvement Recommendations Electrical Thermography

MPL=Maximum Possible Loss*

The Maximum Possible Loss is that which may occur when the most unfavorable circumstances are more or less exceptionally combines and when, as a consequence, the fire is not or unsatisfactorily fought against and therefore is only stopped by impassable obstacles or by lack of combustible material.

EML=Estimated Maximum Loss*

The extent of the fire likely to occur in the normal conditions of activity, occupancy and fire-fighting of the range of buildings concerned. Unusual circumstances (accidental or extraordinary) likely to modify the circumstances of the risk are left out.

MPL/EML are insurance technical terms.
Loss Potential is measured in monetary terms

Maximum Loss

Plant Value Distribution

- Passive Fire Wall Protection Around Some Areas
- Smoke Detection Installed in Ceiling of All Areas
- Water Sprinkler System Installed in All Buildings

Maximum Probable Loss (MPL) <u>Fire Protection Systems</u>

- Smoke Detection and Water Sprinkler Systems fail to operate
- Only fire protection is Passive Fire Wall
- Fire spreads throughout largest unprotected area
- Results in loss of 45% of Total Value

Estimated Maximum Loss (EML) Fire Protection Systems

- Smoke Detection and Water Sprinkler Systems operate effectively minimizing fire damage
- Fire limited to area with single largest value
- Result in loss of 30% of Total Value

THANK YOU